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The collision of axisymmetric turbulent plumes with buoyancy fluxes of opposite sign
is examined experimentally. The total buoyancy flux loss of each plume as a result
of the collision is measured. The measurements are made using a new experimental
technique for measuring the buoyancy flux of a plume based on the ventilation
theory of Linden, Lane-Serff & Smeed (J. Fluid Mech. vol. 212, 1990, p. 309). The
experimental results are presented as functions of the buoyancy flux ratio ψ and the
ratio of radial to vertical separation σ . For axially aligned plumes we find that the
lower-buoyancy-flux plume loses all its buoyancy flux when ψ < 0.3, and that there
is very little buoyancy flux loss for either plume when σ > 0.25. This plume–plume
collision is modelled using a modified set of entrainment equations. The model allows
for the exchange of buoyancy and deflection of the plumes as they pass by each
other. We present predictions of total buoyancy flux loss as a function of both plume
strength and separation. The model predictions are compared to the experimental
measurements of buoyancy flux loss, and show good agreement.

1. Introduction
Colliding plumes occur when there are two opposing sources of buoyancy in close

proximity. For example, an air conditioning vent placed above electronic equipment,
such as a computer, will result in plumes that collide. The negatively buoyant plume
from the vent will interact with the positively buoyant plume from the computer. For
fully developed turbulent plumes, the extent of any interaction will be determined
by the geometry of the situation and the relative strengths of the plumes. The
stratification produced by plumes of opposite sign has been considered for the case
of an enclosed environment (Baines & Turner 1969), and a ventilated environment
(Cooper & Linden 1996). However, both analyses assume that the plumes do not
interact.

This paper examines the case of two turbulent plumes, with buoyancy fluxes of
opposite sign, separated both vertically and horizontally. We begin by reviewing the
literature on plume collisions and in § 2 we discuss preliminary observations from
visualization experiments and present experimental measurements of buoyancy flux
loss. The buoyancy flux measurements are made using a new experimental technique
based on the ventilation model of Linden, Lane-Serff & Smeed (1990). Based on
experimental observations and measurements, an entrainment model for the exchange
of buoyant fluid between the plumes is presented in § 3. The model is used to solve for
the total loss of buoyancy flux in each plume as a function of the radial and vertical
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separation of the plume sources, and the ratio of the buoyancy fluxes. The model is
then compared to our original experimental data. Our conclusions are given in § 4.

Very little work has examined the interaction of colliding plumes, the only relevant
paper being Moses, Zocchi & Libchaber (1993). That paper focuses on the starting
cap of laminar plumes and the merging of co-flowing laminar plumes, but it also
looks at the colliding of approximately equal axisymmetric laminar plumes. Two cases
are examined: the axisymmetric problem when the plumes are aligned, and the case
of slight misalignment. Turbulent plumes are not discussed.

In the axisymmetric case, the plumes collide and spread out with a sharp interface
between the two plumes. No mixing or coalescence was observed, and the disk
of plume fluid that resulted from the collision was maintained for some time. All
results presented were dimensional, as the effective radius of the Peltier cooler was
undetermined. For the case of slight misalignment, the plumes deflect past each other
and then rotate around each other. The period of rotation was found to be stable
over 10–20 cycles, but varied over longer periods of time. No theory was presented
to describe or explain these flows.

Rotation of the type observed by Moses et al. (1993) is not restricted to colliding
plumes. Konig & Fiedler (1991) observed that a turbulent jet in a counter-flow
oscillates around its axis of symmetry. Their paper is mainly concerned with the
depth of penetration into the counter-flow, and the mean concentration of a passive
scalar in the jet. The authors also observed that the jet oscillates around its axis of
symmetry and that the penetration depth fluctuates. The oscillation occurs because the
jet has no preferred direction when it is reversed by the counter-flow. The oscillation
was also observed when the jet entered the counter-flow at a small angle, but the
amplitude of the oscillation decreased as the angle increased. Yoda & Fiedler (1996)
suggest that the amplitude of the oscillation is a function of the jet to counter-flow
velocity ratio, though this hypothesis is not examined in detail. Similar oscillations
are also observed in the height of turbulent fountains (see Turner 1966). Work has
also been done on colliding jets by Witze & Dwyer (1976). They showed that two
axially aligned turbulent jets with equal momentum flux will collide and spread out
in the form of a radial jet.

2. Experimental investigation
2.1. Experimental observations

Preliminary experiments were performed to investigate qualitatively the collision
of opposing turbulent plumes. Opposing turbulent plumes were created by adding
positively and negatively buoyant fluid, fresh and salt water, respectively, at constant
flow rates into a Perspex tank. The tank was initially filled with a saline solution
with density at the mean of the two plume source fluids. The axial separation of
the plumes varied in the range 0 � χ0/H � 1, where χ0 is the axial separation, and
H is the vertical separation of the sources. The buoyancy fluxes of the plumes were
approximately equal in magnitude but opposite in sign. Red dye was added to the
freshwater plume, and blue dye to the saltwater plume for the purpose of visualization.

Three observations were made. First, when the plumes were almost vertically
aligned, they were observed to rotate around each other, as observed by Moses et al.
(1993) for the slightly misaligned laminar case. The rotation period was not constant,
with one plume occasionally dominating the other. After some period of time this
flow regime would reverse and the plume that had been dominated would start to
deflect and dominate the other. This oscillation was not observed for values of χ0/H
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Figure 1. A series of images of two aligned opposing turbulent plumes showing the plumes
colliding, deflecting past each other and mixing. Note that some of the red dyed lighter plume
fluid has mixed with the blue heavy fluid and is flowing downwards. Also note that the ambient
remains clear of plume fluid.

greater than about 0.1. It is reasonable to assume that the basic mechanism for this
rotation is similar to that of the laminar case, or for a jet in a counter-flow. The
plumes deflect past each other but do not have a preferred direction of deflection, so
they rotate around their axis of symmetry. A series of images from a visualization
experiment is shown in figure 1.

Second, the plumes did not spread out horizontally, as was observed for laminar
plumes. Rather they deflected past each other and continued past the source of
the opposing plume. This implies that the plumes maintain some form of structural
integrity. They do not collide, lose momentum, and mix uniformly. Instead they pass
by each other, with mixing occurring along the surface between them. The final
observation was that no fluid was ejected from the plumes during the collision. The
ambient fluid remained completely clear. This implies that at any height there is only
an inflow of fluid into the two plumes. Any fluid of intermediate buoyancy that is
created as a result of mixing during the collision is immediately entrained into one of
the plumes. After the plumes had passed by the source of the opposing plume they
continued to rise (or fall for negatively buoyant plumes) in the form of a turbulent
plume. The focus of this experimental investigation is to determine the buoyancy flux
of the plumes after they collide.

The final observation, that there is no outflow of neutral fluid into the ambient, is
in contrast to both the laminar plume case of Moses et al. (1993), and the turbulent
jet case of Witze & Dwyer (1976). In both these cases the flows collided and spread
out radially. The turbulent plumes do not exhibit this behaviour for two reasons.
First, the outflow would be unstable as it would have the heavier fluid from the
downward-flowing plume flowing out over the lighter fluid from the upward-flowing
plume. Second, as fluid from the two plumes mixes it is re-entrained into one or other
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Figure 2. Schematic diagram of the parameters governing the collision of opposing
turbulent plumes.

of the plumes. The radial outflow observed in the laminar plume case must, therefore,
be stabilized by viscosity.

Colliding axisymmetric turbulent plumes can be characterized in terms of four
parameters: the buoyancy flux of each plume F1 and F2, the axial separation of the
two plumes χ0, and the vertical separation of the plume sources H . This leads to two
dimensionless parameters: the buoyancy flux ratio

ψ =
|F2|
|F1| (2.1)

and the aspect ratio

σ =
χ0

H
. (2.2)

Note that lengths are scaled on the height not the axial separation to avoid
a singularity when there is zero axial separation. We chose the convention that
|F1| � |F2|, and therefore 0 < ψ � 1. Without loss of generality for Boussinesq plumes,
the rising plume is taken to have the larger magnitude buoyancy flux. Therefore,
F1 > 0, F2 < 0 and F1 + F2 � 0. These parameters are shown schematically in figure 2.

The plumes that emerge from the collision region will each have a buoyancy flux
denoted as F1.0 for the stronger plume and F2.0 for the weaker plume. We define the
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dimensionless post-collision buoyancy flux of each plume as

η1 =
|F1.0|
|F1| and η2 =

|F2.0|
|F1| . (2.3)

By conservation of buoyancy we can write

F1.0 + F2.0 = F1 + F2 (2.4)

or

|F1 − F1.0| = |F2 − F2.0|. (2.5)

Hence, the magnitude of the buoyancy flux loss in each plume is the same. In
dimensionless form (2.5) is

1 − η1 = ψ − η2. (2.6)

Therefore, for a given value of ψ we only need measure the buoyancy flux of one of
the post-collision plumes. We can also use (2.6) to set limits on the value of η1. If we
assume that there is no mixing at all then each plume will retain its original buoyancy
flux and η1 = 1 and η2 = ψ . If, on the other hand, the plumes mix completely, then
the weaker plume will lose all of its buoyancy flux and η2 = 0. Therefore, η1 will be
in the range

1 − ψ � η1 � 1. (2.7)

As all measurements will be focused on the stronger plume we will drop the subscript
1 from η when referring to the stronger plume.

2.2. Review of previous techniques

Various experimental techniques have been used to measure the bulk properties
of buoyancy-driven flows. For example, Hacker, Linden & Dalziel (1996) used a
light attenuation technique to examine the time-varying buoyancy profile in lock
release gravity currents. Morton, Taylor & Turner (1956) measured the rise height of
plumes in a stratified ambient and inferred from their measurements the value of the
entrainment coefficient.

Light attenuation techniques involve adding a dye to the fluid and measuring
how the dye attenuates a light of known intensity. The attenuation is related to the
concentration of the dye, which acts as a surrogate for the buoyancy (or passive
tracer) that is being measured. In order to use this technique with colliding turbulent
plumes, three fluids need to be consistently dyed, the two plumes and the ambient
fluid. The only way to do this is to dye the ambient and one plume, while leaving the
second plume un-dyed. Assuming that the ambient fluid has a density equal to the
average of the densities of the two plume sources, the ambient dye attenuation results
in an attenuated light intensity I in the middle of the camera range (say I =128 for a
typical 0–255 digital scale), as the dye concentration scales on the density. The source
fluids provide intensities of 0 and 255, respectively. Once the plumes mix with the
environment their buoyancy is closer to that of the ambient fluid. Typical experiments
result in plume buoyancy to source buoyancy ratios of approximately 1/40 over the
height of the experiment. This dilution results in intensities approximately in the
range of 125 to 131, yielding a total resolution of only 7 points. It is, therefore, only
possible to use this technique with plumes of the same sign (Kaye & Linden 2004),
because the ambient fluid is not dyed, and the source solution can be dyed such that
the full resolution of 256 points can be used once the plume has mixed.

Baines (1983) developed a technique for measuring the volume flow rate in a plume
by placing the plume in a tank with a constant ambient flow rate in the same direction
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Figure 3. Schematic diagram of the experimental set-up for measuring the buoyancy flux loss
in colliding plumes. The diagram shows the colliding plumes, the dense layer of thickness h
formed below the collision, and the bottom opening and resulting outflow.

as the plume flow. A two-layer stratification develops, with the plume flow rate at
the density interface equal to the ambient flow rate. One problem in applying this
technique to colliding plumes is that fluid of the ambient density would need to
be added in order to hold the density interface in place, which requires pumping a
large volume of salt water into the tank at a measured rate. Typically, this would
involve volumes of the order of hundreds of litres – mainly a logistical problem.
A second problem is that once an interface has been established, any interaction
between the colliding plumes below the front (assuming that the falling plume is
being measured) would not occur under the same ambient conditions. Note that in
this configuration the technique would not measure the flow rate of a single plume,
but rather Q1(ζ ) − Q2(ζ ).

2.3. Technique developed for measuring buoyancy flux

To overcome these problems, a new experimental technique was developed to measure
the buoyancy flux of a plume. Based on the ventilation model of Linden et al. (1990),
the technique involves allowing the two plumes to collide and interact, and then
catching the falling plume in an open-topped ventilated box. A schematic is shown in
figure 3.

Below the interaction area, the falling plume has buoyancy flux F1.0 = η1F1. This
plume fills the box to a steady state height h, just as in the basic ventilation problem
(see Linden et al. 1990). The flow rate of the plume through the interface is matched
by the draining flow out of the lower opening (denoted by Q0). After an initial
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transient period the buoyancy of the layer will be uniform (denoted by g′
0), and equal

to that of the mean buoyancy of the plume as it enters the lower layer. The buoyancy
flux of the plume is then given by

F0 = g′
0Q0. (2.8)

By sampling the fluid in the dense layer and the ambient, it is possible to establish the
buoyancy of the layer g′

0. From this it is possible to calculate the flow rate through
the box, by using the draining theory of Linden et al. (1990), as

Q0 = A∗√2g′
0h. (2.9)

Provided that the opening area of the inlet is considerably larger than the outlet area
A0, then A∗ is given by

A∗ = CdA0 (2.10)

The buoyancy flux is therefore given by

F0 = ηF1 = CdA0

√
2g′

0
3/2h1/2. (2.11)

As the source buoyancy flux F1 is known, the value of η is given by

η =
CdA0

√
2g′

0
3/2h1/2

F1

. (2.12)

The discharge coefficient Cd for a sharp-edged orifice is typically in the range 0.6 to
0.65 (see Massey 1989, p. 96). To verify this value, experiments were performed using
only a single plume of known buoyancy flux (in this case, η = 1). Averaging over a
series of experiments gave a value of Cd =0.63 ± 0.015, which is within the expected
range. A detailed analysis of all errors related to these experiments is given in the
Appendix.

Note that the distance between the plume sources is taken as the distance between
the nozzle outlets plus the distance to the virtual origin for each plume. The corrections
were made using the method presented by Hunt & Kaye (2001) and accounted for
about 20 % of the total height (10% at each end).

2.4. Transients and time scales

When two plumes collide they deflect past each other and oscillate around each other.
This oscillation is observed to take a number of forms, with either the two plumes
deflecting in opposite directions, or only one plume deflecting and the other tending
to dominate the flow. Both situations were observed for equal plumes, though for
smaller values of ψ the stronger plume tended to dominate.

As the flow is unsteady, the buoyancy flux draining from the box is not constant.
Therefore, it is necessary to take measurements of the buoyancy flux over time and
average them. In order to establish the averaging time we consider the draining time,
which is the time it takes for a layer of dense fluid to drain out of a ventilated box
(Linden et al. 1990). This time scale is given by

te =
At

2Ao

√
2Cd

√
h

g′
o

(2.13)

where At is the cross-sectional area of the tank. Substituting typical experimental
values into (2.13) gives

te =
513

2 × 12.5 ×
√

2 × 0.63

√
10

0.5
= 103 s, (2.14)
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Figure 4. Measured values of η for ψ = 0.91 and σ = 0. The squares are the instantaneous
measured values and the crosses are values averaged over 5 minutes. The solid line is the
average over the last 20 minutes and the dashed lines are ±7% of that value.

or approximately two minutes. Therefore, variations that occur on this time scale or
longer will appear in a time series. Any fluctuations with shorter periods are damped
out by the capacity of the box, and so will not be measured.

In order to establish the best averaging procedure, an experiment was run with
ψ = 0.91 and σ =0. Measurements were taken every minute for 30 minutes, from the
time the plumes were turned on. The results are plotted in figure 4. The crosses are
the instantaneous results, while the squares are a five minute average. The thick line is
the average value for the last 20 minutes, and the thin lines are ±7 % (see (A 3)). The
box fills up over a period of ≈ 4te, but significant fluctuations are observed outside
the error range predicted earlier. The five minute average ( ≈ 3te), however, can be
seen to filter out these fluctuations, with all points within the estimated error.

Based on this preliminary experiment, the following procedure was adopted for our
experiments. The plumes are turned on, and 17 minutes later (typically ≈ 10te) five
measurements are taken at 1 minute intervals, and the time-average determined.

2.5. Results

Results for the colliding plume experiments are presented for ψ = 1.0, 0.8, 0.6, 0.4,
and 0.2, with σ in the range 0 to 0.3. The results are plotted in figures 5 to 7. The first
point to note about the experimental results is that all 34 measured values of η(ψ, σ )
fall within the range required by conservation of buoyancy, see (2.7). This adds to our
confidence in only measuring the post-collision buoyancy flux of the stronger plume
as η2 can be calculated using the measurements for η1 and (2.6).

Secondly, with only one exception, there is no measurable buoyancy flux exchange
for separations greater than σ ≈ 0.25. For separations less than this (σ < 0.25) there
is a steady decline in η1 reaching a minimum when the plumes are axially aligned
(note that for ψ = 0.2, figure 5(e), the four data points with smallest σ values are
all essentially at the minimum value of η1 = 1 − ψ = 0.8). As a zero-order model we
assume that for σ = 0.25 no mixing occurs and η1. For aligned plumes we assume the
mixing is complete, that is the weaker plume is fully absorbed, and η = 1 − ψ . We



Colliding turbulent plumes 93

0.05 0.10 0.15 0.20 0.25 0.300

0.2

0.4

0.6

0.8

1.0

(a) (b)

(c) (d )

(e)

η

0.2

0.4

0.6

0.8

1.0

η

0.2

0.4

0.6

0.8

1.0

1.2

σ

σσ

0.05 0.10 0.15 0.20 0.25 0.300

0.2

0.4

0.6

0.8

1.0

0.05 0.10 0.15 0.20 0.25 0.300 0.05 0.10 0.15 0.20 0.25 0.300

0.2

0.4

0.6

0.8

1.0

η

0.05 0.10 0.15 0.20 0.25 0.300

Figure 5. Experimental results for η(σ ) with (a) ψ = 1.0, (b) ψ =0.8, (c) ψ = 0.6, (d) ψ = 0.4,
(e) ψ = 0.2. The line is given by η = min(4ψσ + 1 − ψ, 1).

therefore plot a line in figure 5, representing a linear interpolation between these two
extremes,

η = 1 − ψ(1 − 4σ ) for 0 < σ < 0.25. (2.15)

With the exception of ψ =0.6 the majority of points do not lie on the line given
by the linear mixing model (2.15). For larger values of ψ there is less mixing and
buoyancy flux exchange (larger η) as the axial separation is reduced. When the plumes
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Figure 6. Experimental results for η(ψ) for σ = 0. The line (= 1 − ψ) is the minimum
possible value while still conserving buoyancy.

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

ψ

η2

Figure 7. Calculated values of η2(ψ) showing the near total absorption of the weaker plume
for ψ < 0.6.

are aligned (σ = 0) the total loss in buoyancy flux is less than the minimum value of
ηmin = 1 − ψ . For smaller ψ and σ = 0 the weaker plume is completely absorbed by
the stronger plume (η(ψ) � 0.6 = ηmin). As the axial separation is increased the rate
of increase of η is less than the simple linear model, but increases as σ → 0.25. The
difference between the measured values of η and ηmin for σ =0 and larger values of
ψ , are shown more clearly in figures 6 and 7.

For the case of aligned plumes (σ =0) and small ψ the value of η1 is close to the
minimum ( = 1 − ψ). However, for larger values of ψ this is not the case. This implies
that when one plume is significantly stronger than the other it will completely absorb
the weaker plume when axially aligned. For more balanced plume strengths there is
still substantial mixing, but both plumes ‘survive’ the collision with reduced buoyancy
flux.

Clearly the simple linear model for quantifying the level of mixing between colliding
turbulent plumes shows poor agreement with the experimental measurements. We now
look for a more sophisticated model to describe the experimental results presented
above. The model would ideally capture details that are not included in the linear
interpolation. These major discrepancies between the experimental results and the
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Figure 8. Schematic of the entrainment model for colliding plumes. The diagram shows the
equivalent system of two plumes that exchange only buoyant fluid.

simple linear model are:
(i) for aligned plumes, η(ψ > 0.6, σ =0)> ηmin;
(ii) for ψ < 0.6, the rate of increase of η with σ is less than the linear model.

3. Entrainment model for plume collision
We begin our model by recalling that, in the initial visualization experiments

reported above, the plumes did not mix and spread out horizontally, but rather passed
by each other and continued on as plumes beyond the collision region. It is, therefore,
reasonable to assume that the plumes maintain some form of structural integrity
throughout the collision. Consequently, we describe the two plumes separately, but
with the model for each plume containing mixing terms to account for the interaction
between the two plumes. We then write plume conservation equations similar to those
of Morton et al. (1956) with modifications for the entrainment by each plume from
the other. A schematic of this modelling approach is shown in figure 8. This approach
is similar to that taken by Bloomfield & Kerr (2000) to model the interaction of the
upward and downward flow in turbulent fountains.

The conservation equations written in terms of the plume velocity wi and radius
bi , for a uniform environment and top-hat profiles, are

d

dz

(
πb2

i wi

)
= 2πbiαtwi, (3.1)

d

dz

(
πb2

i w
2
i

)
= πb2

i g
′
i , (3.2)

d

dz

(
πb2

i wig
′
i

)
= 0. (3.3)

The subscript i = 1, 2 refers to the plume number, and the subscript t on the
entrainment coefficient α means it is the coefficient appropriate for use with top-hat
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profiles. Two assumptions are now made regarding the nature and geometry of the
plume-to-plume entrainment:

(i) the two plumes interact over the overlapping fraction of their circumferences;
(ii) the fluid exchange between the plumes is the difference between the amount of

fluid that each plume would entrain from the other were it part of the ambient.
These two assumptions are discussed in detail below together with two models for

buoyancy flux exchange.

3.1. Angle of interaction

It is assumed that at any height each plume can be taken as circular and that the
radius grows linearly with distance from the plume source. This is not strictly correct,
as the plumes will not be self-similar in the interaction region as each will be deformed
by the presence of the other. Nevertheless, the circle assumption provides a starting
point for scaling the extent of the plume interaction. The assumption that the plumes
can be modelled as overlapping circular cones means that at any height a certain
fraction of the circumference of each will overlap the other plume. The angles of the
overlap are denoted by 2θi and vary with height.

The choice of radius ri(z) is essentially arbitrary, but needs careful consideration,
as it is assumed that for separations greater than the sum of the two plume radii
no interaction will occur (note that each plume radius grows linearly with height in
opposite directions, therefore the sum of their radii is constant). We could choose a
radius such that no interaction occurs for σ > 0.25 based on our earlier experimental
results. However, there are insufficient data to establish accurately this value from
our experiments. The model we present here also accounts for the drawing together
of the plumes due to the entrainment velocity in a manner similar to that for co-
flowing plumes Kaye & Linden (2004). Therefore a smaller starting radius is required.
The obvious choices for the radius are the top-hat profile radius, the radius of the
equivalent Gaussian profile (ri =

√
2rg), and a radius given by the distance at which

the mean buoyancy is a certain fraction of the centreline value (say 5 %). Interaction
will still occur when the plumes are at a separation slightly greater than the Gaussian
radius as the turbulent edge of the plume is further away from the axis. A greater
length is required, and for this reason the third choice, the 5 % radius, is used as a
first approximation. The radius of each plume is then given by

ξ1 =
6αgζ

5

√
|ln(0.05)|, ξ2 =

6αg(1 − ζ )

5

√
|ln(0.05)|, (3.4)

where ξi = ri/H and αg = αt/
√

2. It is important to note that the radius is
independent of ψ and that for separations greater than the maximum radius
(σ0 > (6αg/5)

√
|ln(0.05)| = 0.19), no interaction will occur in this model (as θ1 = θ2 = 0).

The angles θ1 and θ2 are given by

cos θ1 =
σ 2

0 + ξ 2
1 − ξ 2

2

2σ0ξ1

, cos θ2 =
σ 2

0 + ξ 2
2 − ξ 2

1

2σ0ξ2

. (3.5)

It is assumed that when one plume completely surrounds the other, the angle for the
larger radius plume is 0 and the other angle is π.

A plot of θ1 as a function of height is shown in figure 9, for various values of σ .
For clarity, height is plotted vertically. The plot indicates that, for larger values of
σ , the height over which there is a large angle of interaction is smaller (for example,
for σ = 0.18 θ1 < 0.8 for ζ > 0.1). For smaller separations, the height at which θ1 < 0.8
increases (ζ > 0.5 for σ = 0.12 and ζ > 0.6 for σ =0.06). For plumes with no axial
separation (σ =0) θ1 = π for ζ < 0.5 and θ1 = 0 for ζ > 0.5. This implies that the rising
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Figure 9. Plot of θ1 as a function of ζ for σ = 0, 0.06, 0.12 and 0.18.

plume is completely surrounded by the falling plume until the point halfway between
the sources, and then the rising plume surrounds the falling plume above that height.

3.2. Exchange of volume flux

As discussed earlier, the main consequence of the collision of two plumes is a
reduction in the buoyancy flux of each plume. In order for this to occur, the plumes
must exchange fluid. To calculate the amount of fluid drawn into each plume at any
height we assume that each plume regards the other as part of the ambient fluid.
We then calculate the rate of entrainment into each plume based on the entrainment
velocity, plume radius and the angle of overlap. The amount of fluid entrained into
the ‘dominant’ plume is taken to be the difference ∆ between these two calculated
values. The ‘dominated’ plume loses the same volume of fluid. The entrainment term
on the right-hand side of (3.1) will contain the regular entrainment term for a sector
of angle 2(π − θi) plus the difference between the calculated entrainment rates ∆. The
difference between the entrainment rates is given by

∆ = 2αt (θibiwi − θjbjwj ). (3.6)

Equation (3.1) therefore becomes

d

dz

(
πb2

i wi

)
= 2αt (πbiwi − θjbjwj ), (3.7)

where j �= i. The values of wi and wj are taken as the magnitudes of the plume
velocities, and are always positive. Note that (3.7) is equivalent to (3.1) with an
additional term for the fluid removed from the plume due to entrainment by the
other.

3.3. Exchange of buoyancy flux

Having established an estimate of the volume flux exchanged at any height, we
need to examine possible models for the exchange of buoyancy flux. There are two
models to consider. One possibility is that we could assume that entrainment is a
two-way process and that, at each height, each plume entrains fluid from the other



98 N. B. Kaye and P. F. Linden

and buoyancy exchange is in both directions. In that case the appropriate expression
for the buoyancy flux exchange is

d

dz

(
πb2

i wig
′
i

)
= 2αt (θibiwig

′
j − θjbjwjg

′
i). (3.8)

Alternatively, the entrainment could be regarded as an essentially one-way process
at any given height. That is, at any given height fluid exchange between the plumes
occurs in only one direction. The buoyancy transfer would therefore be the net fluid
transfer rate multiplied by the mean buoyancy of the plume that is net losing fluid.
Hence, if ∆ > 0, the plume i is gaining fluid (3.6) and the buoyancy exchange is given
by ∆g′

j . On the other hand if ∆ < 0, the buoyancy exchange is given by ∆g′
i . In this

case the net buoyancy exchange is given by

∆g′
k

{
k = i, ∆ < 0
k = j, ∆ > 0.

(3.9)

The equivalent expression to (3.8) for this entrainment model is

d

dz

(
πb2

i wig
′
i

)
= 2αt (πbiwi − θjbjwj )g

′
k. (3.10)

We will refer to these models as (A) for the bidirectional exchange model and (B) for
the unidirectional exchange model. Note that the rate of exchange of volume flux at
any height is the same for both models.

3.4. Other potential changes to the plume equations

The above modifications to the plume entrainment equations account for the exchange
of buoyancy between the two plumes. Other changes could also be made. The model
ignores any momentum loss due to the collision. This is a reasonable omission based
on the observation made earlier that the plumes tend to pass around each other rather
than block each other. This observation does not, however, mean that the plumes
will not exchange momentum due to entrainment. It could also be argued that each
plume will be relatively more buoyant when interacting with the opposing plume
as the net buoyancy difference between the plume and its surroundings is greater
due to the presence of the opposing plume. We could, therefore, add a term for the
exchange of momentum ∼ (−∆wk) to (3.2) and a second term to (3.2) to account for
the difference in perceived ambient buoyancy ∼ (+θib

2
i g

′
j ). We have chosen not to

add these terms for two reasons. First, the terms are of opposite sign and will tend
to cancel each other out. More importantly, however, for a first-order correction the
terms of greatest significance will be those that alter the plume driving forces, that
is, their buoyancy fluxes. Hence, we focus on the exchange of buoyancy and ignore
other possible corrections.

3.5. Full non-dimensional equations

These equations can be rewritten in terms of the bulk properties of the plume to give

dQi

dz
= αt

(
2M

1/2
i − 2θj

π
M

1/2
j

)
, (3.11)

dMi

dz
=

FiQi

Mi

(3.12)

and
dFi

dz
=

2αt

π

(
θiM

1/2
i

Fj

Qj

− θjM
1/2
j

Fi

Qi

)
(3.13a)
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or

dFi

dz
=

2αt

π

(
θiM

1/2
i − θjM

1/2
j

) Fk

Qk

, (3.13b)

where F = b2wg′, M = b2w2, Q = b2w, and the subscript k is the same as used in
(3.9). For the purpose of solving these equations it is convenient to non-dimensionalize
them in terms of the fluxes of a pure plume. This results in the dimensionless variables
qi, mi andfi defined by

Qi = qi

(
5F1

8αt

)1/3 (
6αtH

5

)5/3

, (3.14)

Mi = mi

(
5F1

8αt

)2/3 (
6αtH

5

)4/3

, (3.15)

Fi = fiF1. (3.16)

Then equations (3.12)–(3.14) become

dqi

dζ
=

5

6

(
2m

1/2
i − 2θj

π
m

1/2
j

)
, (3.17)

dmi

dζ
=

4

3

fiqi

mi

(3.18)

and

dfi

dζ
=

5

3π

(
θim

1/2
i

fj

qj

− θjm
1/2
j

fi

qi

)
(3.19a)

or

dfi

dζ
=

5

3π

(
θim

1/2
i − θjm

1/2
j

)fk

qk

. (3.19b)

The boundary conditions are assumed to be those for pure plumes at their asymptotic
(virtual) origin and are given by

q1 = 0, m1 = 0, and f1 = 1 at ζ = 0, (3.20)

q2 = 0, m2 = 0, and f2 = ψ at ζ = 1. (3.21)

Equations (3.17)–(3.19), subject to (3.20) and (3.21), were solved numerically. The
technique involved solving the equations for plume 1 as if plume 2 were a pure plume
with no interaction. The results for plume 1 were then used to calculate the right-hand
side of the equations for plume 2. This process was repeated, alternating between
plumes, until the solutions for each plume converged. The convergence criterion
required the difference between iterations to be less than 0.001 for all three fluxes.

3.6. Comparison of model solutions

The model developed above can be used to solve for the fluxes of buoyancy,
momentum and volume for each plume at any height. However, this model seeks
to establish the net loss of buoyancy flux as a result of a collision between plumes.
Therefore, we do not report momentum and volume flux predictions and instead
focus on buoyancy fluxes.

In § 2 we presented measurements of the total loss of buoyancy flux after a collision,
but did not consider the loss as a function of height. The loss in buoyancy flux can
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Figure 10. Plot of the buoyancy flux loss η as a function of distance from the plume source
ζ for (a) the bidirectional buoyancy exchange model (A) and (b) the unidirectional buoyancy
exchange model (B), and aspect ratios of σ = 0, 0.06, 0.12 and 0.18.

also be described by the parameter ηi defined here as

ηi(ζ, σ ) =
Fi(ζ, σ )

F1

. (3.22)

Plots of η1(ζ, σ ) for ψ = 1.0 are shown in figure 10(a) for model (A) and figure
10(b) for model (B). The plots show how the buoyancy flux decreases with height for
various values of the aspect ratio σ for each of the two proposed entrainment models.

For the case of the bidirectional entrainment model (A), shown in figure 10(a),
we note that the total buoyancy loss increases with separation. This is more clearly
seen in figure 11 which shows a plot of η(σ ) with ψ =1 for both buoyancy exchange
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Figure 11. Plot of η(σ ) for ψ = 1. The solid line represents the unidirectional buoyancy
exchange model (B) while the dotted line represents model (A).

models. For closely aligned plumes the bulk of the buoyancy flux loss is in the centre
of the flow with only minimal losses near each plume source. However, for larger
separations the bidirectional model shows significant buoyancy flux exchange near
each plume source. This results from the fact that near the source the plume buoyancy
is very large (in fact it is singular at the origin) so, if the opposing plume extracts even
a small amount of fluid from the plume near the source, it will result in a significant
exchange of buoyancy flux. This does not occur for more closely aligned plumes as
the opposing plume completely surrounds the plume near the source and, therefore,
has zero angle of interaction (while the other plume has an angle of interaction of
2π).

For the unidirectional model (B) this large-scale near-source buoyancy flux exchange
does not occur as the net fluid transfer is into the plume that is nearest its origin.
When the plumes are aligned vertically (σ = 0) most of the mixing occurs between
0.3 < ζ < 0.7 where η drops from around 0.9 to 0.3, implying a loss of 60 % of the
initial buoyancy flux of the plume. This behaviour is the same as for model (A) as the
angle of interaction assumption of § 3.1 implies that, for the first half of its travel from
the source, the plume can only gain fluid (as it is surrounded by the other plume),
whereas for the second half it can only lose fluid since it completely surrounds the
other plume. For larger separations, this concentration of mixing in the middle third
of the flow is less pronounced.

We now compare models (A) and (B) for ψ =1 as a function of the plume
separation. A plot of the net buoyancy flux parameter η(σ ) is given in figure 11,
which shows that model (A) predicts an increase in mixing as the plume separation
increases until the plumes are no longer touching, at which point there is no buoyancy
flux loss. Model (B), on the other hand, predicts a decrease in buoyancy flux
exchange as the separation increases. Although we have no direct measurements
of how buoyancy exchange occurs at any given height, figure 11 suggests that the
unidirectional buoyancy exchange model more accurately tracks the experimental
results presented in § 2. For that reason we will continue to develop our model using
(3.19b).
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Figure 12. η as a function of σ for ψ = 1.0, 0.8, 0.6, 0.4 and 0.2. The lowest line is for
ψ = 1.0 and the highest is for ψ = 0.2.
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Figure 13. ηmin as a function of ψ . The thin straight line (= 1−ψ) shows the lowest value ηmin

that can be achieved while conserving buoyancy, and the thick line shows the value predicted
by the colliding plumes entrainment model.

3.7. Details of entrainment model (B) solution

A plot of η1(σ, ψ) for model (B) is shown in figure 12. A number of points are
worth noting. First, the minimum value of η (that is, the maximum loss in buoyancy
flux) occurs when the plumes are aligned vertically, with η increasing with separation.
Second, the value of ηmin(ψ = 1) is not always zero; even when the plumes are
aligned, they do not cancel each other out. In fact, only for ψ < 0.3 is the weaker
plume completely entrained into the stronger plume. This result is shown more clearly
in figure 13, which plots the predicted value of η1 for σ = 0. This plot also shows
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Figure 14. Velocity vector diagram for unequal colliding plumes.

the minimum possible value of η1 = 1 − ψ that would occur if the weaker plume were
completely absorbed. The predicted value of η1 is higher than ηmin for ψ > 0.3, and
equal to ηmin for ψ < 0.3.

The model presented above assumes that the plumes entrain from each other, but
that each is otherwise unaffected by the presence of the other. However, two plumes
in close proximity to each other will tend to draw together due to the ambient velocity
field caused by entrainment into the plumes (Kaye & Linden 2004). We now apply a
first-order correction to our model to account for this tendency to draw together.

3.8. Plume deflection

Based on experimental results (for example, Rouse, Yih & Humphreys 1952) it is
reasonable to approximate the ambient velocity field outside a single plume, created
by entrainment into a plume, as a horizontal flow. The radial velocity into the plume
is therefore given by u(r) = −αwr where w is the vertical velocity in the plume,
α the entrainment coefficient and r the radial distance from the plume centreline.
Gaskin, Papps & Wood (1995) showed experimentally that, for ambient velocities of
the same order as the entrainment velocity, the two velocity fields can be added, and
this result will be used below. Furthermore, the entrainment flow into each plume
is irrotational and governed by Laplace’s equation. The linearity of this equation
justifies the addition of the two fields. It is, therefore, reasonable to assume that each
plume is passively advected by the entrainment field of the other. The velocity vector
diagram showing how each plume is deflected by the presence of the other is shown
in figure 14.

The values for the velocities can be calculated from the solution to (3.17), (3.18) and
(3.19), but as a first-order approximation it is assumed that the pure-plume velocities
can be used. The values of w1, w2, u1, and u2 are given by

w1 = c∗F
1/3
1 z−1/3, w2 = c∗F

1/3
1 ψ1/3(H − z)−1/3, (3.23)

u1 = c∗F
1/3
1 ψ1/3(H − z)−1/3α

b2

χ
, u2 = c∗F

1/3
1 z−1/3α

b1

χ
. (3.24)
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Treating each plume separately leads to

dχ1

dz
= − u1

w1

,
dχ2

dz
= − u2

w2

. (3.25)

Taking the plumes as conical, with radii given by

b1 =
6αz

5
, b2 =

6α(H − z)

5
(3.26)

equation (3.24) becomes

dχ1

dz
=

6α2
t

5χ1

ψ1/3(H − z)2/3z1/3,
dχ2

dz
=

6α2
t

5χ2

ψ−1/3(H − z)1/3z2/3. (3.27)

Dividing both sides by H 2 and integrating leads to

1
2

(
σ 2

1 − σ 2
0

)
= −6α2

5
ψ1/3

∫ ζ

0

(1 − ζ ∗)2/3ζ ∗1/3 dζ ∗, (3.28)

1
2

(
σ 2

2 − σ 2
0

)
= −6α2

5
ψ−1/3

∫ ζ

0

(1 − ζ ∗)1/3ζ ∗2/3 dζ ∗. (3.29)

Approximating (1 − ζ )2/3 by

(1 − ζ )2/3 ≈ 1 − 2

3
ζ − 1

9
ζ 2 − 4

81
ζ 3 − 7

243
ζ 4 . . . (3.30)

means (3.27) that can be evaluated as

σ1 =

√
σ 2

0 − ψ1/3
12α2

t

5

∑
(ζ ) (3.31)

with ∑
(ζ ) =

4

3
ζ 4/3 − 2

7
ζ 7/3 − 1

30
ζ 10/3 − 4

351
ζ 13/3. (3.32)

The deflection of plume 2 is given by

σ2 =

√
σ 2

0 − ψ−1/3
12α2

t

5

∑
(1 − ζ ). (3.33)

The total reduction in axial separation of the two plumes is therefore given by

σ = σ1 + σ2 − σ0. (3.34)

The average separation σ over the height was then calculated and a coordinate
transformation function σ (σ0) evaluated. A plot of this transformation is shown in
figure 15. Two points are worth noting. First, for initial separations of σ0 < 0.08 the
mean separation is zero. Second, the transformation is insensitive to variations in ψ

over the range 0.2 <ψ < 1.0, because the mean velocity of the plume is only a weak
function of the buoyancy flux.

3.9. Corrected solution

A quadratic curve was fitted to the data plotted in figure 15 (σ0 = 0.08 + 0.5σ+1.02σ 2),
which allowed a correction to figure 12 for the drawing together of the plumes. The
corrected plot of η(σ0, ψ) is shown in figure 16.
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Figure 15. Plot of the coordinate transformation σ̄ (σ ) where σ is plotted vertically. The
function is shown for values of ψ = 1.0, 0.8, 0.6, 0.4, and 0.2. The thickest line is for ψ = 1.0
and the dot-dashed line is for ψ = 0.2. Note that most lines overlap and are not clearly
distinguishable.
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Figure 16. η(σ,ψ) corrected for the drawing together of the plumes, plotted for values of
ψ = 1.0, 0.8, 0.6, 0.4 and 0.2. The lowest line is for ψ = 1.0 and the highest is for ψ = 0.2.

This is only a first-order correction, used to establish a scale for the deflection of
the plumes. From the minimum value of σ for which no interaction occurs, we get
σu =0.187 uncorrected and σc =0.209 as the corrected value (that is, if σ0 = 0.209
then σ = 0.187). This is a 10 % increase in the aspect ratio over which we can expect
interaction between the plumes. Further, the choice of the initial length scale for
calculating the angle of interaction was fairly arbitrary. However, this value is close
to the experimentally evaluated value of σc ≈ 0.25. The more significant result of the
correction is that, for aspect ratios less than σ 0 = 0.08, we expect more mixing than
the uncorrected calculation (figure 12) suggests.
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Figure 17. Plot of η as a function of σ for ψ = 1.0. The thick line is the uncorrected model
prediction from figure 11. The thin line is the prediction corrected for the drawing together of
the plumes (figure 14). The dashed line is given by η = min(4ψσ + 1 − ψ, 1).
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Figure 18. Plot of η as a function of σ for (a) ψ = 0.8, (b) ψ = 0.6. The theoretical lines are
the same as figure 17.

3.10. Comparison with experimental results

We now compare the results of our model with the earlier experiments. These
are shown in figures 17–20. We recall the two major discrepancies between the
linear approximation and the experimental results. First, for equal axially aligned
plumes each plume retains some of its buoyancy flux after the collision, that is
η(σ = 0, ψ < 0.6) > ηmin. This feature is clearly captured in figure 17. Second, for
ψ > 0.6, the rate of increase of η with σ is less than the linear interpolation. This
feature is also captured by the model (see figure 19) which predicts only a slight
increase in η with separation.

Figures 17–20 show the experimental points from figures 5(a)–5(e) with the model
predictions of figures 12 and 13. The linear approximation shown in figures 5(a)–5(e)
is also included in these figures. There is reasonable agreement between the full model
predictions and the experimental results, and the model provides a significantly better
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Figure 19. Plot of η as a function of σ for (a) ψ = 0.4, (b) ψ = 0.2. The theoretical lines are
the same as figure 17.
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Figure 20. (a) Plot of (a) η1 and (b) η2 as a function of ψ . The thin line is the minimum
possible value that conserves buoyancy (2.6). The thick line is the model prediction.

description of our measurements than the simple linear interpolation (2.15). There is
particularly good agreement between the entrainment model and our experiments for
σ = 0 (figure 20).

4. Conclusions
An experimental technique was developed to measure the buoyancy flux of a plume,

based on the ventilation model of Linden et al. (1990). This technique was used to
measure the buoyancy flux loss that occurs when two plumes with buoyancy fluxes
of opposite sign collide. Measurements were made over a wide range of horizontal to
vertical aspect ratios σ and buoyancy flux ratios ψ . The experimental results show
that two colliding plumes will exchange buoyancy flux as they pass by each other
provided that their horizontal to vertical separation ratio is less than σ ≈ 0.25. For
smaller horizontal separations the extent of the buoyancy flux exchange increases to
a maximum when the plumes are axially aligned. When one plume is significantly
stronger than the other, the weaker plume can be completely absorbed by the stronger
plume. However, for buoyancy flux ratios greater than ψ ≈ 0.6, both plumes emerge
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Parameter Typical value(x) Typical error (∆x/x)

ρsource 1.1 g cm−3 10−5

ρambient 1.05 g cm−3 10−5

ρlayer-ρambient 2 × 10−3 g cm−3 5 × 10−3

g′
0 2 cm s−2 5 × 10−3

g′
source 50 cm s−2 10−5

h 1.0 cm 5 × 10−2

Qsource 1.0 cm−3 s−1 0.02
Cd 0.63 0.02
χ0 0–3 cm 0.08 cm
H 10 cm 0.02

Table 1. Typical measurements and relative errors for buoyancy flux measurements. Note
that the error on the axial separation is an absolute error.

from the collision region with some of their initial buoyancy flux. For axially aligned
plumes of equal buoyancy flux (ψ = 1) each plume retains about a quarter of its
original buoyancy flux.

Based on these experimental results a model has been developed to describe
the buoyancy flux loss in each plume due to plume–plume collision. The plume
conservation equations (Morton et al. 1956) were modified to account for the
interactions that occur during collision. Two models were considered to describe the
exchange of buoyancy flux. Model (A) assumed a bidirectional buoyancy exchange
while model (B) a unidirectional exchange. Based on our experimental results we
concluded that the unidirectional entrainment model better describes our results.
The model was used to predict the total loss in buoyancy flux of the two plumes
in terms of their source strengths and separation. A first-order correction to this
theory was made to account for the drawing together of the two plumes due to the
entrainment field. This first-order model shows significantly better agreement with the
experimental results than a simple linear interpolation that assumes complete mixing
for σ = 0 and no mixing for σ > 0.25.

N. B.K. would like to thank the British Council and the Association of Common-
wealth Universities for their financial support for this research, and we thank Dr
S. B. Dalziel for his assistance with the experiments.

Appendix. Error estimate for experiments
Here we review the possible sources of error in our experiments. In order to

establish a value of η for any given experiment the following measurements need to
be made: g′

0, h, F1, A0 and Cd . It is also necessary to measure the vertical and axial
separation, and the buoyancy flux ratio. A summary of typical values and relative
errors for these measurements is presented in table 1.

Analysing the impact of the errors listed in table 1 on (2.12), we find

∆η ≈ ∂η

∂A0

∆A0 +
∂η

∂Cd

∆Cd +
∂η

∂g′
0

∆g′
0 +

∂η

∂h
∆h +

∂η

∂F1

∆F1. (A 1)

Dividing both sides by η we obtain

∆η

η
≈

∣∣∣∣∆A0

A0

∣∣∣∣ +

∣∣∣∣∆Cd

Cd

∣∣∣∣ +
3

2

∣∣∣∣∆g′
0

g′
0

∣∣∣∣ +
1

2

∣∣∣∣∆h

h

∣∣∣∣ +

∣∣∣∣∆F1

F1

∣∣∣∣ . (A 2)
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Substituting the values from table 1 gives

∆η

η
≈ 10−4 + 0.02 + 3

2
× 10−5 + 1

2
× 5 × 10−2 + 0.02 ≈ 0.07. (A 3)

Errors in evaluating the variables ψ and σ are given by

∆ψ

ψ
≈

∣∣∣∣∆F1

F1

∣∣∣∣ +

∣∣∣∣∆F2

F2

∣∣∣∣ ≈ 0.04 (A 4)

and
∆σ

σ
≈

∣∣∣∣∆χ0

h

∣∣∣∣ ≈ 0.01. (A 5)

These errors are used to evaluate the error bars for the experimental results plotted.
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